Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(19)2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37835911

RESUMO

The purpose of this study is to analyze the reliability of predictive models for higher heating values related to organic materials. A theoretical model was developed, which utilizes bond dissociation energies (BDEs) to establish correlations between elemental composition and calorific values. Our analysis indicates that the energy contribution of one mole of hydrogen atoms is approximately equal to -144.4 kJ mol-1. Further investigation reveals significant variations in the bond dissociation energies of carbon atoms within organic compounds, resulting in a range of energy outputs from -414.30 to -275.34 kJ mol-1 per mole of carbon atoms. The presence of oxygen atoms in organic compounds has a negative impact on the magnitude of combustion heat, with values ranging from 131.1 to 207.17 kJ mol-1. The combustion mechanism imposes certain constraints, leading to the equation HHVg = -31.34·[C] - 144.44·[H] + 10.57·[O] for organic compounds. Based on the parameter sensitivity analysis, the coefficient associated with carbon mass fraction exhibits a significantly greater impact on result prediction accuracy, demonstrating a sensitivity value of 92.65%. The results of further analysis indicate that empirical correlations involving the mass fractions of the elements N and S in lignocellulosic materials may be prone to over-fitting, with sensitivity indices of 1.59% and 0.016%, respectively.

2.
J Environ Manage ; 348: 119080, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37827086

RESUMO

Environmental concerns associated with the rapid rising plastic consumption have led to the search for better waste utilization and management. Pyrolysis has emerged as an ideal and promising technique for energy extraction from plastic waste. The aim of this work is to explore the waste plastic pyrolysis behavior under non-isothermal heating conditions. The decomposition characteristics, reaction mechanism, kinetics and thermodynamics of a typical widely used thermosetting plastic, acrylonitrile butadiene styrene (ABS), were studied via coupled thermogravimetry, Fourier transform infrared spectrometry and gas chromatography-mass spectrometry analysis (TG-FTIR-GC/MS). Kinetic analysis showed the average Eα values are estimated to be 187.02, 188.55, 187.04 and 185.67 kJ/mol via advanced Vyazovkin, Flynn-Wall-Ozawa (FWO), Tang and Starink model-free method, respectively. Model-fitting CR and master-plots method indicated that f(α)=(1-α)n is the most probable reaction mechanism. The equation of kinetic compensation effect was further developed as lnA = -3.1955 + 0.1736 Eα. Based on these initial inferences, a new reaction scheme coupled with Particle Swarm Optimization (PSO) was put forward for modeling ABS pyrolysis. The optimized values of E, A and n are 198.07 kJ/mol, 7.61 × 1012 s-1 and 1.56, respectively. The predicted results showed that the experimental data can be well characterized by the optimized parameters from PSO, validating the effectiveness and accuracy of the inverse modeling procedure. Moreover, it is found that the volatile products are mainly composed of aromatic compounds, ketones, amines, esters, nitrile compounds, alkenes and amines. Based on the FT-IR and GC-MS results, the possible chemical reactions for ABS pyrolysis from molecular structure were proposed. Finally, thermodynamic analysis was carried out, the calculated values of enthalpy ΔH, Gibb's free energy ΔG and entropy ΔS indicated that non-spontaneous reactions with low favorability exists during ABS decomposition, the process is complex therefore extra energy is needed to promote the reaction. The obtained results should offer as an important reference for future disposal and thermochemical management of such polymer waste.


Assuntos
Acrilonitrila , Cinética , Espectroscopia de Infravermelho com Transformada de Fourier , Butadienos , Estireno , Termogravimetria , Aminas
3.
Chemosphere ; 325: 138397, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36925014

RESUMO

The feasibility and potential mechanisms of the self-alkali activation brought by municipal solid waste incineration (MSWI) fly ashes to the self-cementation of arsenic-contaminated soils were quantitatively evaluated and comprehensively analyzed to avoid the additional application of the alkali activators and binder materials traditionally. The employment of the two kinds of precursor materials achieved the self-alkali-activated self-cementation ('double self') under ambient conditions. The largest compressive strength (MPa) of 25.64 and lowest leaching toxicities (mg/L) of 21.05, 2.86, 0.08, 0.02, 2.05, and 0.34 for Zn, Cu, Cr, Cd, Pb, and As were obtained in the solidified matrix. Geopolymerization kinetics of the 'double self' cementation can be mathematically fitted by the Johnson-Mehl-Avrami-Kolmogorov model. CaClOH and halite in the MSWI fly ashes set up the self-alkali activation by reacting with the kaolinite and quartz in soils contaminated with arsenic by forming layered hydration and three-dimensional geopolymerization products to push for self-cementation.


Assuntos
Arsênio , Metais Pesados , Resíduos Sólidos/análise , Cinza de Carvão , Incineração/métodos , Álcalis , Cimentação , Metais Pesados/análise
4.
J Environ Manage ; 324: 116344, 2022 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-36166867

RESUMO

In this study, the 3-mercaptopropionic acid (MA) was chosen to achieve the anionic intercalation into the green rust (GR) materials (MA-GR). The zeolite-rich tuff functionalized with the MA-intercalated GR (MA-GR-tuff) was subsequently synthesized and used to remove both HgII cations and CrVI anions in a binary system. MA-GR-tuff showed the best adsorption capacities to both HgII and CrVI among the adsorbent materials. The optimal combination of parameters was determined as the molar ratio of FeII to FeIII of 3.5, the molar ratio of OH- to the total iron of 3.75, the molar ratio of MA to the total iron of 2.5, and the mass ratio of the total iron to the tuff of 1.25. The pseudo-first-order kinetic model was appropriate in describing the kinetic sorption of CrVI by MA-GR-tuff. Both the pseudo-first-order kinetic model and Elovich were suitable for explaining HgII sorption. The maximum monolayer adsorption capacities of MA-GR-tuff towards CrVI and HgII were 185.19 mg/g and 72.99 mg/g, respectively. More flocs and plumes were formed in the MA-GR while the intercalation and more pores and crevices of different sizes were found in the MA-GR-tuff. Sulfhydryl complexation and the molecular sieve of tuff obviously both played a role in influencing the adsorption process. This study directly overcomes the drawback brought by the natural tuff to the treatment of a cationic-and-anionic binary system and supplies a new kind of tuff-based adsorbent for the potential use for the remediation of HM-contaminated wastewater.


Assuntos
Mercúrio , Poluentes Químicos da Água , Zeolitas , Ácido 3-Mercaptopropiônico , Compostos Férricos , Concentração de Íons de Hidrogênio , Cromo/análise , Adsorção , Ferro , Cinética , Ânions , Cátions , Poluentes Químicos da Água/análise
5.
Materials (Basel) ; 12(11)2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31195678

RESUMO

The effects of potassium chloride (KCl) on the pyrolysis of medium density fiberboard (MDF) were investigated by using thermogravimetry/Fourier-transfer infrared spectroscopy (TG-FTIR). Five MDF samples treated with different KCl concentrations (0%, 0.5%, 1%, 2% and 3%) were heated with a heating rate of 20 °C/min. The thermogravimetry (TG) results showed that KCl caused the primary pyrolysis stage towards lower temperatures. The FTIR results indicated that with the concentrations of KCl, the formation of CH4 and C=O functional groups decreased while the formation of CO2 and CO increased. To figure out the reason for the observed phenomena, the kinetic parameters in primary pyrolysis and the secondary charring reaction were estimated by a differential evolution (DE) optimization algorithm. The prediction indicated that KCl shifted the initial degradation temperature of each component of MDF towards a lower temperature. Char and gas yields increased with the concentration of KCl, whereas the tar yield reduced. The changes in activation energies revealed that KCl played a catalyst role in the reaction of resin, hemicellulose and cellulose in primary pyrolysis. For lignin, KCl had little effect. In the secondary charring reaction, KCl apparently promoted the reaction of tar. The catalytic effect of KCl on MDF pyrolysis was the combination of primary pyrolysis and the secondary charring reaction. Finally, the optimal catalytic concentration for KCl on MDF pyrolysis was analyzed.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...